Worksheet 14, Math 10560
$1 \boldsymbol{R}$ Use the trapezoidal rule with step size $\Delta x=2$ to approximate the integral $\int_{0}^{4} f(x) d x$ where the graph of the function $f(x)$ is given below.

$2 \boldsymbol{R}$ Use Simpson's rule with step size $\Delta x=1$ to appoximate the integral $\int_{0}^{4} f(x) d x$ where a table of values for the function $f(x)$ is given below.

x	0	1	2	3	4
$f(x)$	2	1	2	3	5

$3 \boldsymbol{R}$ (a) Circle the letter below alongside the trapezoidal approximation to

$$
\ln 3=\int_{1}^{3} \frac{1}{x} d x \quad \text { using } \quad n=8
$$

A $\quad \int_{1}^{3} \frac{1}{x} d x \approx \frac{1}{8}\left[1+2\left(\frac{4}{5}\right)+2\left(\frac{2}{3}\right)+2\left(\frac{4}{7}\right)+2\left(\frac{1}{2}\right)+2\left(\frac{4}{9}\right)+2\left(\frac{2}{5}\right)+2\left(\frac{4}{11}\right)+\left(\frac{1}{3}\right)\right]$
B $\quad \int_{1}^{3} \frac{1}{x} d x \approx \frac{1}{12}\left[1+4\left(\frac{4}{5}\right)+2\left(\frac{2}{3}\right)+4\left(\frac{4}{7}\right)+2\left(\frac{1}{2}\right)+4\left(\frac{4}{9}\right)+2\left(\frac{2}{5}\right)+4\left(\frac{4}{11}\right)+\left(\frac{1}{3}\right)\right]$
$\mathrm{C} \quad \int_{1}^{3} \frac{1}{x} d x \approx \frac{1}{8}\left[1+\left(\frac{4}{5}\right)+\left(\frac{2}{3}\right)+\left(\frac{4}{7}\right)+\left(\frac{1}{2}\right)+\left(\frac{4}{9}\right)+\left(\frac{2}{5}\right)+\left(\frac{4}{11}\right)+\left(\frac{1}{3}\right)\right]$
(b) Recall that the error E_{T} in the trapezoidal rule for approximating $\int_{a}^{b} f(x) d x$ satisfies

$$
\left|\int_{a}^{b} f(x) d x-T_{n}\right|=\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}}
$$

whenever $\left|f^{\prime \prime}(x)\right| \leq K$ for all $a \leq x \leq b$.
Use the above error bound to determine a value of n for which the trapezoidal approximation to $\ln 3=$ $\int_{1}^{3} \frac{1}{x} d x$ has an error

$$
\left|E_{T}\right| \leq \frac{1}{3} 10^{-4}
$$

$4 \boldsymbol{\Omega}$ Suppose the Midpoint rule is to be used to approximate the integral

$$
\int_{0}^{10} \sin (\sqrt{6} x) d x
$$

What is the minimum number of points required to guarantee an accuracy of $1 / 1000$?
500

550

600
650

450
$5 R$ Use the Trapezoidal rule with step size $\Delta x=1$ to appoximate the integral $\int_{0}^{4} f(x) d x$ where a table of values for the function $f(x)$ is given below.

x	0	1	2	3	4
$f(x)$	2	1	2	3	5

$6 \boldsymbol{R}$ Consider the integral

$$
\int_{0}^{2}(2 x+3) d x
$$

(a) (5 pts.) Evaluate this integral exactly.
(b) (8 pts.) Using the Trapezoidal Rule with $n=4$ find an approximation to the integral.
(c) (2 pts.) Explain your answer in part (b).Hint:Consider the error.
$7 \boldsymbol{R}$ Suppose that $\left|f^{\prime \prime}(x)\right| \leq 1$ for $0 \leq x \leq 2$. If E_{M} is the error in the Midpoint Rule using n subintervals, then $\left|E_{M}\right|$ is less than

$$
\begin{aligned}
& \frac{1}{3 n^{2}} \\
& 0 \\
& \frac{1}{12 n^{2}} \\
& \frac{2}{3 n^{2}} \\
& \frac{1}{24 n^{2}}
\end{aligned}
$$

$8 \boldsymbol{R}$ The integral $\int_{1}^{3} \frac{d x}{x}$ is estimated using the Trapezoidal Rule, using subintervals of size $\Delta x=1$. The approximation to $\ln 3$ obtained is

