Worksheet 14, Math 10560 1 \Re Use the trapezoidal rule with step size $\Delta x = 2$ to approximate the integral $\int_0^4 f(x) dx$ where the graph of the function f(x) is given below.

2 \Re Use Simpson's rule with step size $\Delta x = 1$ to appoximate the integral $\int_0^4 f(x) dx$ where a table of values for the function f(x) is given below.

x	0	1	2	3	4
f(x)	2	1	2	3	5

 ${\bf 3} \, {f \widehat{\gamma}}$ (a) Circle the letter below alongside the trapezoidal approximation to

$$\ln 3 = \int_1^3 \frac{1}{x} dx \quad \text{using} \quad n = 8$$

A
$$\int_{1}^{3} \frac{1}{x} dx \approx \frac{1}{8} \left[1 + 2\left(\frac{4}{5}\right) + 2\left(\frac{2}{3}\right) + 2\left(\frac{4}{7}\right) + 2\left(\frac{1}{2}\right) + 2\left(\frac{4}{9}\right) + 2\left(\frac{2}{5}\right) + 2\left(\frac{4}{11}\right) + \left(\frac{1}{3}\right) \right]$$

$$B \qquad \int_{1}^{3} \frac{1}{x} dx \approx \frac{1}{12} \left[1 + 4\left(\frac{4}{5}\right) + 2\left(\frac{2}{3}\right) + 4\left(\frac{4}{7}\right) + 2\left(\frac{1}{2}\right) + 4\left(\frac{4}{9}\right) + 2\left(\frac{2}{5}\right) + 4\left(\frac{4}{11}\right) + \left(\frac{1}{3}\right) \right]$$

C
$$\int_{1}^{3} \frac{1}{x} dx \approx \frac{1}{8} \left[1 + \left(\frac{4}{5}\right) + \left(\frac{2}{3}\right) + \left(\frac{4}{7}\right) + \left(\frac{1}{2}\right) + \left(\frac{4}{9}\right) + \left(\frac{2}{5}\right) + \left(\frac{4}{11}\right) + \left(\frac{1}{3}\right) \right]$$

(b) Recall that the error E_T in the trapezoidal rule for approximating $\int_a^b f(x) dx$ satisfies

$$\left|\int_{a}^{b} f(x)dx - T_{n}\right| = |E_{T}| \le \frac{K(b-a)^{3}}{12n^{2}}$$

whenever $|f''(x)| \le K$ for all $a \le x \le b$.

Use the above error bound to determine a value of n for which the trapezoidal approximation to $\ln 3 = \int_{1}^{3} \frac{1}{x} dx$ has an error

$$|E_T| \le \frac{1}{3} 10^{-4}$$

 $4\,\,{\color{black}{\fbox{\scriptsize Suppose}}}$ the Midpoint rule is to be used to approximate the integral

$$\int_0^{10} \sin(\sqrt{6} x) \ dx$$

•

What is the minimum number of points required to guarantee an accuracy of 1/1000?

500

550

600

650

450

5 \Re Use the Trapezoidal rule with step size $\Delta x = 1$ to appoximate the integral $\int_0^4 f(x) dx$ where a table of values for the function f(x) is given below.

x	0	1	2	3	4
f(x)	2	1	2	3	5

 $6 \, \, \widehat{} \,$ Consider the integral

$$\int_0^2 (2x+3) \ dx.$$

(a) (5 pts.) Evaluate this integral exactly.

- (b) (8 pts.) Using the Trapezoidal Rule with n = 4 find an approximation to the integral.
- (c) (2 pts.) Explain your answer in part (b).Hint:Consider the error.

7 \Re Suppose that $|f''(x)| \leq 1$ for $0 \leq x \leq 2$. If E_M is the error in the Midpoint Rule using n subintervals, then $|E_M|$ is less than

 $\frac{1}{3n^2}$ 0 $\frac{1}{12n^2}$ $\frac{2}{3n^2}$ $\frac{1}{24n^2}$

8 \Re The integral $\int_{1}^{3} \frac{dx}{x}$ is estimated using the Trapezoidal Rule, using subintervals of size $\Delta x = 1$. The approximation to $\ln 3$ obtained is